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• We empirically investigate the trading time risk (TTR) of stock investment via escape time in ˆDJI and CSI300.
• A peak distribution for shorter trading days and a two-peak distribution are observed.
• There is the monotonicity (or non-monotonicity) for the stability of the absolute (or relative) TTR.
• The trading day plays an opposite role on the absolute (or relative) TTR and its stability between ˆDJI and CSI300.
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a b s t r a c t

This article investigates the trading time risk (TTR) of stock investment in the case of stock
price drop of Dow Jones Industrial Average (ˆDJI) and Hushen300 data (CSI300), respec-
tively. The escape time of stock price from the maximum to minimum in a data window
length (DWL) is employed tomeasure the absolute TTR, the ratio of the escape time to data
window length is defined as the relative TTR. Empirical probability density functions of
the absolute and relative TTRs for the ˆDJI and CSI300 data evidence that (i) whenever the
DWL increases, the absolute TTR increases, the relative TTR decreases otherwise; (ii) there
is themonotonicity (or non-monotonicity) for the stability of the absolute (or relative) TTR;
(iii) there is a peak distribution for shorter trading days and a two-peak distribution for
longer trading days for the PDF of ratio; (iv) the trading days play an opposite role on the
absolute (or relative) TTR and its stability between ˆDJI and CSI300 data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Econophysics is a new branch of physics, which uses physical ideas and methods to study economic or financial prob-
lems [1,2]. Theories of econophysics present some new explanations for classical financial problems such as market data of
peak fat-tail characteristic [3,4], long range memory and clustering of volatility [5]. For example, Mantegna & Stanley [2],
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Gopikrishnan et al. [6] and Malevergne et al. [7] portrayed the financial asset prices for various time scales of statistical fea-
tures, and explained commendably the peak fat-tail characteristics by using the stable Lévy distribution [5,8], power-law tail
distribution, and tensile index distribution, respectively; Peters [9] used the chaos and fractal theory to study the financial
markets, and proposed the fractal market hypothesis that is different from the efficientmarket hypothesis [10]; Mantegna &
Stanley [2] employed the probability theory, critical phenomena in physics and turbulence theory to analyze financial time
series, and proposed a new stochastic model; Bouchaud et al. [11] adopted the method of statistical physics to empirically
investigate statistical characteristics of financial prices, and threw doubt on the rationality of the central limit theorem for
the cornerstone of the classical financial risk theory. On the other hand, physicists studying the financial system broadened
the research field of the traditional finance. For example, Mandelbrot [12] pointed out that the Wall Street stock market
data present multi scale fractal features; Jiang & Zhou [13] and Yuan & Zhuang [14] found the universality of multi scale
fractal phenomenon in studying China’s capital market; Huang [15] in the ‘‘Physics Reports’’ systematically elaborated the
experimental econophysics concerned with statistical physics of humans in the laboratory. This is based on the controlled
human experiments developed by physicists for studying some economic or financial problems. In addition, the escape time
as a physical quantity has been widely used in various fields such as chemical reaction system [16,17], gene expression dy-
namics [18], stochastic resonance phenomenon in a vegetation ecological system [19]. Also, the noise enhanced stability
phenomenon is observed by the method of escape time [20–22]. For example, Dubkov et al. [20] found the noise enhanced
stability phenomenon in a piece-wise linear dichotomously fluctuating potential with metastable state; Spagnolo, Agudov
andDubkov [21] experimentally and numerically discussed the noise enhanced stability in different physical systems; Spag-
nolo et al. [22] reviewed the noise enhanced stability and the resonant activation for models of interdisciplinary physics.
The escape time can be usually employed to describe the stability of stochastic system, e.g., in a stochastic single-gene net-
work [23], active Brownianmotion [24] and an ecological system [25]. Soon afterwards, since a Langevin equation approach
to a model for stock market fluctuations and crashes was proposed [26], the stock price escape phenomenon in stock mar-
ket crashes has been widely discussed. For example, Valenti et al. [27] and Spagnolo and Valenti [28] investigated statistical
properties of the hitting times for stock market evolution for several models, Masoliver and Perellö [29,30] presented exact
expressions for the survival probability and the mean exit time, Bonanno et al. [31,32] studied the mean escape time for
financial markets, Bonanno & Spagnolo [33] discussed escape times of stock price returns for the Wall Street market, and Li
and Mei [34] and Li et al. [35] analyzed the returns and risks of investment.

Risk of stock investment is widely studied by investors and scholars [31,32,34–41]. For example, Markowitz [36,37]
developed themean–variancemodel for risk of stock investment inwhichmeanwas used to represent the expect return and
variance was employed to measure the risk; Turner, Startz & Nelson [38] discussed the heteroskedasticity, risk and learning
in the stock market via a Markov model; Lo & Repin [39] observed significant differences among physiological responses
across 10 traders in discussing the psychophysiology of real-time financial risk processing; Tang & Tsitsiashvili [40]
discussed the ruin probability of the finite horizon in a discrete-timemodel with heavy-tailed insurance and financial risks;
Christoffersen [41] investigated the elements of financial risk management; Bonanno, Valenti & Spagnolo [31,32] used the
Hestonmodel andmean escape time to discuss the returns and risks in stockmarket crashes. Hence, risk of stock investment
in a financial market is worthy to be further investigated.

The main purpose of this paper is to discuss the trading time risk (TTR). If the time of the stock price from high to low
is shorter in the case of stock price drop, the time of investors to trade their stocks is less. In this case, investors will face
a higher TTR. In particular, in the case of stock market crashes, investors lack the time to sell their stocks in the region of
the right price. In other words, an increase of TTR for investors trading in stock price drop leads to a decrease of time from
high to low (i.e., the escape time). Hence, to investigate the TTR, we here employ the escape time [31,32,34,35] to calculate
the time of the stock price from high to low. Also, we investigate the TTRs of stock investment for the Dow Jones Industrial
Average (ˆDJI) and Hushen300 (CSI300) data.

The rest of this paper is organized as follows. Section 2 presents a model of the TTR in the case of stock price drop based
on the escape time [31,32,34,35]. Section 3 investigates statistical properties of TTR. Section 4 presents a theoretical model.
Some discussions are given in Section 5.

2. The trading time risks in stock price drop

If the time of the stock price from high to low is shorter in the case of stock price drop, the time of selling stock for
investors is less. In this case, investors will face a higher risk. In particular, when the stockmarket crashes, investors lack the
time to sell their stock in a reasonable price range, i.e., when stock price drops, the time decrease from high to low leads to
an increase of investors’ TTR. Hence, to investigate the TTR, we employ the escape time [31,32,34,35] to calculate the time
of the stock price from high to low.

A real stock price is a stochastic time series with respect to the data selection period (e.g., 1 min, 1 h, 1 day, . . .). Let
P1, P2, . . . be a stock price time series. To find themaximum andminimum values of N data periods at the tth point-in-time,
we take Nmax–min periods before the tth time point (including the tth time point) to be a data window in calculating the
following maximum and minimum values of Nmax–min periods:

Pmax
t,Nmax–min

= Max{Pt−Nmax–min , Pt−Nmax–min+1, . . . , Pt−1, Pt},

Pmin
t,Nmax–min

= Min{Pt−Nmax–min , Pt−Nmax–min+1, . . . , Pt−1, Pt}.
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Fig. 1. Probability density function (PDF) of escape time Tmax–min via frequency and kernel density estimation methods with Nmax–min = 20 and 1 trading
day being data period for the ˆDJI data (left panel) and CSI300 data (right panel).

Let tmax
t and tmin

t be the point-in-times of data window {Pt−Nmax–min , . . . , Pt}, which are equal to Pmax
t,Nmax–min

and Pmin
t,Nmax–min

,
respectively. Considering a stock price drop process, the stock price of the Nmax–min periods will make a record low and then
maximum value also can become low. Therefore, we consider the following three conditions:

(1) a record low comes first, i.e., tmax
t < tmin

t ;
(2) a record low, i.e., tmin

t−1 < tmin
t ;

(3) a record high comes before the stock price drop, i.e., tmin
t−1 < tmax

t .

Then, we can obtain the escape time Tmax–min of stock price from the maximum Pmax
t,Nmax–min

to minimum Pmin
t,Nmax–min

for
Nmax–min periods. Obviously, the escape time is Tmax–min = tmin

t − tmax
t for the above considered three conditions. Also, the

TTR is inversely proportional to the escape time Tmax–min. In what follows, we discuss probability density function (PDF) of
TTR for two real financial markets, and call the risk defined by the escape time Tmax–min as the absolute TTR.

3. The probability density function

To empirically investigate the performance of the absolute TTR, we calculate the PDF of the escape time Tmax–min for a real
data set. Also, to investigate the effect of the data on the performance of the absolute TTR, we consider the adjusted close
prices in two markets. One is 30 stocks in Dow Jones Industrial Average (ˆDJI) from 29 march 1990 (or offering date) to 3
June 2013 [42]. The other one is 300 stocks in HuShen 300 (CSI300) index from 4 January 2000 (or offering date) to 4 April
2015 [43].

The PDFs of the escape time Tmax–min for the ˆDJI and CSI300 data are plotted in Fig. 1(a) and (b), respectively. Also, we
calculate their corresponding kernel density estimations [44–46], which are given in Fig. 1(a) and (b), respectively. Here, the
bandwidth is taken to be a unit period of the escape time. Examination of Fig. 1 indicates that (i) there is a peak value for
PDF of Tmax–min; (ii) there is a high consistence between the empirical estimation and the kernel density estimation. Hence,
the following results are obtained via the kernel density estimation.

The PDFs of the escape time Tmax–min with different values of Nmax–min for the ˆDJI data and CSI300 data are presented
in Fig. 2(a) and (b), respectively, which shows a peak distribution. Inspection of Fig. 2 indicates that the maximum value of
distribution first decreases and then increases asNmax–min increases. Also, Tmax–min corresponding to the peak first moves to a
longer escape time and thenmoves to a shorter escape time. In addition,we calculate the expectation and standard deviation
of the ˆDJI and CSI300 data corresponding to Fig. 2, which are shown in Table 1. Examination of Table 1 indicates that (i) the
expectations of the ˆDJI andCSI300data increase asNmax–min increases; (ii) standarddeviation increases asNmax–min increases,
i.e., there is the monotonicity for the expectation and standard deviation of the escape time as a function of Nmax–min. The
above findings show that increasing the data window length Nmax–min leads to a decrease of the absolute TTR due to the fact
that the longer the expectation of the escape time Tmax–min , the weaker the absolute TTR ; increasing standard deviation
weakens the stability of the absolute TTR due to the longer standard deviation of the escape time Tmax–min.

The PDFs of the escape time Tmax–min with various trading days for the ˆDJI and CSI300 data are given in Fig. 3(a) and
(b), respectively. Examination of Fig. 3 shows a peak distribution for shorter trading days (e.g., trading days = 5) and a
two-peak distribution for longer trading days (e.g., trading days = 30). Also, Fig. 3(a) indicates that increasing the trading
days enhances the maximum peak, but Fig. 3(b) implies that the peak of distribution first decreases and then increases.
Again, the expectations and standard deviations of the ˆDJI and CSI300 data are presented in Table 2, which shows that the
expectation of the ˆDJI data decreases but the expectation of the CSI300 data increases as the trading day increases. On the
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Table 1
Expectations and standard deviations (SD) of the ˆDJI and
CSI300 data for various Nmax–min .

Nmax–min ˆDJI data CSI300 data
Expectation SD Expectation SD

10 4.682 2.040 4.805 2.039
30 8.630 4.018 8.977 4.094
60 23.55 11.25 25.64 12.91

120 44.52 23.83 48.38 27.22
200 65.84 40.04 76.61 47.50

Fig. 2. Probability density function (PDF) of escape time Tmax–min at 1 trading day under different values of Nmax–min for the ˆDJI data (left panel) and CSI300
data (right panel).

Fig. 3. Probability density function (PDF) of escape time Tmax–min at Nmax–min = 20 under different trading days for the ˆDJI data (left panel) and CSI300
data (right panel).

other hand, Fig. 3(a) shows that increasing the trading days first weakens the standard deviation and then enhances the
standard deviation, i.e., a maximum stability of the absolute TTR for the ˆDJI data is consistent with the optimal trading days
(e.g., trading days = 15); while Fig. 3(b) implies that the standard deviation first enhances and then weakens as the trading
day increases, i.e., a minimum stability of the absolute TTR for the CSI300 data is consistent with the worst trading days
(e.g., trading days = 15). That is, the non-monotonicity is observed in terms of the expectation and standard deviation
of the escape time as a function of the trading days. From a perspective of financial, increasing the trading days enhances
the absolute TTR for the ˆDJI data, but weakens the absolute TTR for the CSI300 data. The above observations show that
increasing the trading days play an opposite effect on the absolute TTR and the stability between ˆDJI and CSI300.
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Table 2
Expectations and standard deviations (SD) of the ˆDJI and CSI300
data for various trading days.

Trading days ˆDJI data CSI300 data
Expectation SD Expectation SD

1 8.683 4.033 9.078 4.091
5 8.574 3.933 9.247 4.272

15 8.113 3.658 10.29 4.686
30 7.644 3.878 10.49 4.602

Table 3
Expectations and standard deviations (SD) of the ˆDJI and CSI300
data for various Nmax–min .

Nmax–min ˆDJI data CSI300 data
Expectation SD Expectation SD

10 0.4682 0.2040 0.4823 0.2048
30 0.4315 0.2009 0.4538 0.2011
60 0.3925 0.1875 0.4483 0.2080

120 0.3710 0.1987 0.4077 0.2080
200 0.3292 0.2002 0.3795 0.2167

Fig. 4. Probability density function (PDF) of the relative rate of escape time Rmax–min at 1 trading day under different values of Nmax–min for the ˆDJI data
(left panel) and CSI300 data (right panel).

Due to the correlation between Tmax–min and Nmax–min, it is rather difficult to compare the values of TTR for various
Nmax–min. Hence, we employ the relative escape time ratio Rmax–min = Tmax–min/Nmax–min to measure the relative TTR with
different data windows. The PDFs of the relative escape time ratio Rmax–min with various Nmax–min for the ˆDJI and CSI300
data are plotted in Fig. 4(a) and (b), respectively. Fig. 4 indicates a peak distribution, but it is rather difficult to identify the
graphic details due to the insufficient sample and small bandwidth (1/20). Hence, we calculate the expectation and standard
deviation of the ˆDJI and CSI300 data, which are shown in Table 3. Examination of Table 3 implies that the expectations of the
ˆDJI and CSI300 data monotonically decrease, but their corresponding standard deviations first decrease and then increase
asNmax–min increases. In other words, there is amonotonicity in terms of the expectation of Rmax–min and a non-monotonicity
in terms of the standard deviation of Rmax–min for various values of Nmax–min. From a perspective of financial, increasing the
data window length Nmax–min leads to a decrease of the relative TTR. Also, the minimum of standard deviations is consistent
with the maximum stability of the relative TTR for the ˆDJI and CSI300 data. The above findings show that Nmax–min has the
same effect on the relative TTR and the stability between ˆDJI and CSI300.

The PDFs of the relative escape time ratio Rmax–min with different trading days for the ˆDJI and CSI300 data are presented in
Fig. 5(a) and (b), respectively. The bandwidth in Fig. 5 is the same as that in Fig. 4. Fig. 5 shows a peak distribution for shorter
trading days (e.g., trading days = 5) and a two-peak distribution for longer trading days (e.g., trading days = 30). From
Fig. 5(a), increasing trading days enhances the maximum peak, but it follows from Fig. 5(b) that distribution first decreases
and then increases. Also, we calculate the expectations and standard deviations of Rmax–min for the ˆDJI and CSI300 data,
which are shown in Table 4. From Table 4, the expectation of Rmax–min decreases for the ˆDJI data but increases for the CSI300
data as the trading day increases. Increasing the trading days first weakens the standard deviation and then enhances the
standard deviation for the ˆDJI data, but first enhances the standard deviation and then weakens the standard deviation for
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Fig. 5. Probability density function (PDF) of the relative rates of escape time Rmax–min at Nmax–min = 20 under different trading days for the ˆDJI data (left
panel) and CSI300 data (right panel).

Table 4
Expectations and standard deviations (SD) of the ˆDJI and CSI300 data
for various trading days.

Trading days ˆDJI data CSI300 data
Expectation SD Expectation SD

1 0.4342 0.2016 0.4539 0.2045
5 0.4287 0.1966 0.4623 0.2136

15 0.4056 0.1829 0.5148 0.2343
30 0.3822 0.1939 0.5247 0.2301

the CSI300 data, i.e., the maximum (or minimum) stability of the relative TTR for the ˆDJI (or CSI300) data is consistent with
the optimal (or worst) trading days (e.g., trading days = 15). In other words, the expectation (or standard deviation) of
Rmax–min is a monotone (or non-monotone) function of Nmax–min. From the perspective of financial, increasing the trading
days enhances the relative TTR for the ˆDJI data, but weakens the relative TTR for the CSI300 data. The above observations
show that increasing the trading days has an opposite effect on the absolute TTR and the stability between ˆDJI and CSI300.

Finally, to examine the rationality of estimation of two-peak distribution in Figs. 3 and 5, the PDFs at 30 trading days in
Figs. 3(a), (b), 5(a) and (b) are calculated by frequency and kernel density estimationmethods plotted in Fig. 6(a), (b), (c) and
(d), respectively. The bandwidth is taken to be a unit trading day in Fig. 6(a) and (b), which is the same as in Fig. 3, and the
bandwidth in Fig. 6(c) and (d) is the same as that in Fig. 5. Also, two methods show the two-peak distribution. Hence, the
previous results are rational via the kernel density estimation. From a financial point of view, the performance of two-peak
distribution results from the diversity and different classification of the stocks in market. Industry, public utilities, medical,
computer and other varieties of stocks are included in the stock market. According to the performance of the company, the
stocks can be simply divided into junk stocks with poor performance and blue chips with better performance. Obviously,
in stock market crashes after its bubble, the stock prices fall relatively slowly for blue chips due to the stable value of blue
chips, but decrease faster for junk stocks due to the unstable value of junk stock. In Fig. 6 with the same conditions, the blue
chips tend to have a longer escape time, but junk stocks generally have a shorter escape time. This is a reason for a behavior
of two-peak distribution observed in Fig. 6.

4. The model

In Refs. [20–22,31], the escape time is shown to have the characteristic of exponential function using the theoretical and
empirical methods. Thus, the escape time Tmax–min can be defined as

Tmax–min = A exp


1V
υ


, (1)

where A represents a prefactor which depends on the potential profile, 1V is a barrier, and υ is the noise intensity. From
the perspective of physics, the escape time is the time that a Brownian particle with a noise intensity moves throughout
a barrier 1V . In a financial market, the noise intensity υ and barrier 1V are directly related to investors and stocks. The
utility of investors on the returns and risks of stocks affects their trading behaviors. When the utilities of investors move
throughout their barriers of utilities, investors escape from market and stock will crash from high to low. Hence, 1V/υ is
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a b

dc

Fig. 6. Probability density function (PDF) of escape time Tmax–min (or Rmax–min) via frequency and kernel density estimation methods with 30 trading days
being the data period for the ˆDJI data in (a) (or (c)) and CSI300 data (b) (or (d)).

concerned with the utilities of investors. The utility function is related to return r and its mean µ and variance σ 2 [47].
Finally, a potential function U(r, µ, σ 2,Nmax–min) is analogous to a utility function and is employed to replace 1V/υ . Thus,
Eq. (1) can be written as

Tmax–min = A exp{U(r, µ, σ 2,Nmax–min)}. (2)
The return r is stochastic, and the PDF of return can be obtained by the following Gaussian kernel density [44–46]

Pr(r) =
1

√
2πnh

exp


−

1
2

n
i=1


r − ri
h

2


, (3)

where ri is the ith sample observation of return r , n is the total number of samples, h is the bandwidth. For the case that
Nmax–min = 20 and h = 0.01, the PDFs of return at 1 and 30 trading days for the ˆDJI and CSI300 data are shown in Fig. 7(a)
and (b) [48,49], respectively. From Fig. 7, we observe that |r| is less than 1 in most cases, the peak value for the PDF of return
is close to zero. For the given total number of samples, µ and σ 2 can be estimated by their corresponding sample mean
and sample variance, respectively. For simplicity, µ and σ 2 are considered as a constant at a given total number of samples.
Taking the first-order Taylor expansion of U(r|µ, σ 2,Nmax–min) at r = 0 yields

U(r|µ, σ 2,Nmax–min) = a0 + a1r + O(r2), |r| ≤ 1, (4)
where a0 and a1 are the coefficients when µ, σ 2 and Nmax–min are given. Hence, the function of return with respect to the
escape time Tmax–min is given by

r = h(Tmax−min) ≃
U(r|µ, σ 2,Nmax−min) − a0

a1
=

log


Tmax−min
A


− a0

a1
. (5)
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Fig. 7. Probability density function (PDF) of return via kernel density estimation methods with Nmax–min = 20 at 1 trading day in (a) and 30 trading days
in (b).

Finally, from Eqs. (3) and (5), we obtain the following PDF of Tmax–min:

PT (Tmax−min) = Pr(h(Tmax−min))|h′(Tmax−min)|

=
1

√
2πnha1Tmax−min

exp

−
1
2

n
i=1

 log
 Tmax−min

A


−a0

a1
− ri

h


2 ,

where h′(·) is the first derivative of function h(·). Finally, from the above equation, the average TTR (e.g., E(Tmax−min)) can
be evaluated by

E(Tmax−min) =


∞

0
Tmax−minPT (Tmax−min)dTmax−min.

To compare the above theoretical model and the empirical results given in Section 3, the PDFs of the escape time Tmax–min
corresponding to frequency estimation (e.g., see Fig. 1) and theoretical result for the ˆDJI and CSI300 data are plotted in
Fig. 8(a) and (b), respectively. Here, the theoretical result for the ˆDJI data is computed by setting A = 3.767, a0 = 0.852 and
a1 = 0.585; while the theoretical result for the CSI300 data is evaluated by taking A = 5.976, a0 = 0.435 and a1 = 0.5525.
Fig. 8 shows that there is a good consistence between frequency estimation and theoretical result. Also, the theoretical
average TTRs in Fig. 8(a) and (b) are 8.735 and 9.169, respectively, which are rather close to their corresponding empirical
values (e.g., see Table 2). For the longer trading days (e.g., 30 trading days), Fig. 9 plots the PDFs of the escape time Tmax–min
withNmax–min = 20 for frequency of real data and theoretical result. Here, the theoretical result for the ˆDJI data is calculated
by setting A = 2.51, a0 = 1.11 and a1 = 0.6737; the theoretical result for the CSI300 data is evaluated by taking A = 4.195,
a0 = 1.007 and a1 = 0.5089. The theoretical average TTR values in Fig. 9(a) and (b) are 7.382 and 9.552, respectively, which
are quite close to their corresponding empirical values (e.g., see Table 2). Examination of Fig. 9 shows that there is a relatively
good consistence between the real data and the theoretical result. The above results show that increasing the trading days
(e.g., from Fig. 8 to Fig. 9) leads to an increase of the discrepancy between the empirical and theoretical distributions, which
is consistent with that observed in Refs. [50,51].

5. Conclusions

To investigate the TTR of stock investment under stock price drop, the escape time is employed to represent the time
of the stock price from the maximum to minimum. Also, to investigate statistical performance of the absolute and relative
TTRs, we plot probability density functions of the escape time Tmax–min and the relative escape time ratio Rmax–min, which
indicate that the PDFs computed by using the frequency method and the kernel density estimation method are consistent.
The empirical results show that increasing the data window length Nmax–min weakens the absolute TTR and the stability,
but enhances the relative TTR; a maximum stability of the relative TTR is related to an optimal data window length; there
is a peak distribution for shorter trading days and two-peak distribution for longer trading days; the absolute and relative
TTRs are enhanced for the ˆDJI data but weakened for the CSI300 data as increasing trading days; the maximum stability of
the absolute and relative TTRs is consistent with the optimal trading days for the ˆDJI data, but a minimum stability of the
absolute and relative TTRs is consistent with the worst trading days for the CSI300 data.
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Fig. 8. Comparison of probability density functions (PDFs) of escape time Tmax–min for frequency estimation of real data and theoretical result with 1 trading
day and Nmax–min = 20 being the data period for the ˆDJI data in (a) and CSI300 data (b).

Fig. 9. Comparison of probability density functions (PDFs) of escape time Tmax–min for frequency estimation of real data and theoretical result with 30
trading days and Nmax–min = 20 being the data period for the ˆDJI data in (a) and CSI300 data (b).

References

[1] P.W. Anderson, K.J. Arrow, D. Pines, The Economy as an Evolving Complex System, Addison Wesley Longman, 1988;
P.W. Anderson, K.J. Arrow, D. Pines, The Economy as an Evolving Complex System II, Addison Wesley Longman, 1997.

[2] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2000.
[3] J.P. Bouchaud, M. Potters, Theory of Financial Risks, Cambridge University Press, Cambridge, 2000.
[4] J. Voit, The Statistical Mechanics of Financial Markets, Springer, Berlin, 2001.
[5] M.M. Dacorogna, R. Gencay, U.A. Müller, R.B. Olsen, O.V. Pictet, An Introduction to High-Frequency Finance, Academic Press, New York, 2001.
[6] P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer, H.E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60

(1999) 5305.
[7] Y. Malevergne, V. Pisarenko, D. Sornette, Quant. Finance 5 (2005) 379.
[8] R.N. Mantegna, H.E. Stanley, Nature 383 (1996) 587.
[9] E.E. Peters, Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility, John Wiley & Sons, 1996, p. 1.

[10] E.F. Fama, Efficient capital markets: A review of theory and empirical work, J. Finance 25 (1970) 383.
[11] J.P. Bouchaud, M. Potters, M. Meyer, Apparent multifractality in financial time series, Eur. Phys. J. B 13 (2000) 595.
[12] B.B. Mandelbrot, A MultifractalWalkdown, Sci. Am. 71 (1999).
[13] Z.Q. Jiang, W.X. Zhou, Multifractal analysis of Chinese stock volatilities based on the partition function approach, Physica A 387 (2008) 4881.
[14] Y. Yuan, X.T. Zhuang, Multifractal description of stock price index fluctuation using a quadratic function fitting, Physica A 387 (2008) 511.
[15] J. Huang, Experimental econophysics: Complexity, self-organization, and emergent properties, Phys. Rep. (2014).
[16] C.H. Zeng, et al., Eur. Phys. J. B 87 (2014) 1–9.
[17] T. Yang, et al., Eur. Phys. J. B 87 (2014) 1–11.
[18] T. Yang, et al., J. Stat. Mech. Theory Exp. 12 (12) (2014) P12015.
[19] Q. Han, et al., Physica A 408 (2014) 96–105.
[20] A.A. Dubkov, N.V. Agudov, B. Spagnolo, Phys. Rev. E 69 (2004) 061103-1–061103-7.
[21] B. Spagnolo, N.V. Agudov, A.A. Dubkov, Acta Phys. Pol. 35 (2004) 1419–1436.
[22] B. Spagnolo, et al., Acta Phys. Pol. 38 (2007) 1925–1950.

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref1a
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref1b
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref2
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref3
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref4
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref5
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref6
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref7
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref8
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref9
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref10
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref11
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref12
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref13
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref14
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref15
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref16
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref17
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref18
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref19
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref20
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref21
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref22
http://www.FaraFile.ir


www.F
ar

aF
ile

.ir

J.-C. Li et al. / Physica A 461 (2016) 778–787 787

[23] C. Zhang, et al., Physica A 434 (2015) 68–83.
[24] C.H. Zeng, C. Zhang, J.K. Zeng, R.F. Liu, H. Wang, J. Stat. Mech. Theory Exp. 2015 (2015) P08027.
[25] C.H. Zeng, et al., Ecol. Complex. 22 (2015) 102–108.
[26] J.P. Bouchaud, R. Cont, Eur. Phys. J. B 6 (1998) 543.
[27] D. Valenti, B. Spagnolo, G. Bonanno, Physica A 382 (2007) 311.
[28] B. Spagnolo, D. Valenti, Int. J. Bifurcation Chaos 18 (2008) 2775.
[29] J. Masoliver, J. Perelló, Phys. Rev. E 78 (2008) 056104.
[30] J. Masoliver, J. Perelló, Phys. Rev. E 80 (2009) 016108.
[31] G. Bonanno, D. Valenti, B. Spagnolo, Eur. Phys. J. B 53 (2006) 405.
[32] G. Bonanno, D. Valenti, B. Spagnolo, Phys. Rev. E 75 (2007) 016106.
[33] G. Bonanno, B. Spagnolo, Fluctuation and noise letters 5 (2005) L325–L330.
[34] J.C. Li, D.C. Mei, Phys. Lett. A 377 (2013) 663.
[35] J.C. Li, C. Long, X.D. Chen, Physica A 427 (2015) 282.
[36] H. Markowitz, J. Finance 7 (1) (1952) 77–91.
[37] H.M. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital markets, Basil Blackwell, Cambridge, MA, 1987.
[38] C.M. Turner, R. Startz, C.R. Nelson, J. Financ. Econ. 25 (1989) 3.
[39] A.W. Lo, D.V. Repin, J. Cogn. Neurosci. 14 (2002) 323.
[40] Q. Tang, G. Tsitsiashvili, Stochastic Process. Appl. 108 (2003) 299.
[41] P.F. Christoffersen, Elements of Financial Risk Management, Academic Press, 2011.
[42] Yahoo Finance, http://finance.yahoo.com/q/cp?s=%5EDJI.
[43] Wind-database, http://www.wind.com.cn/En/Default.aspx.
[44] S.J. Sheather, M.C. Jones, J. R. Stat. Soc. Ser. B Stat. Methodol. 683 (1991).
[45] P. Hall, S.J. Sheather, M. Jones, J. Marron, Biometrika 78 (1991) 263.
[46] S.T. Chiu, Ann. Statist. 1883 (1991).
[47] H. Lévy, H.M. Markowitz, Amer. Econ. Rev. 69 (1979) 308–317.
[48] P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley, Eur. Phys. J. B 3 (1998) 139.
[49] F. Lillo, R.N. Mantegna, Phys. Rev. E 62 (2000) 6126.
[50] A.A. Drăgulescu, V.M. Yakovenko, Quant. Finance 2 (2002) 443.
[51] A.C. Silva, V.M. Yakovenko, Physica A 324 (2003) 303.

Downloaded from http://iranpaper.ir http://tarjomebazar.com
09372121085 Telegram
026-33219077

http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref23
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref24
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref25
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref26
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref27
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref28
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref29
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref30
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref31
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref32
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref33
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref34
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref35
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref36
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref37
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref38
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref39
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref40
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref41
http://finance.yahoo.com/q/cp?s=%255EDJI
http://www.wind.com.cn/En/Default.aspx
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref44
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref45
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref46
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref47
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref48
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref49
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref50
http://refhub.elsevier.com/S0378-4371(16)30332-6/sbref51
http://www.FaraFile.ir

	The trading time risks of stock investment in stock price drop
	Introduction
	The trading time risks in stock price drop
	The probability density function
	The model
	Conclusions
	References


